Radar Signal Classification with Multi-Frequency Multi-Scale Deformable Convolutional Networks and Attention Mechanisms

Author:

Liang Ruofei1,Cen Yigang12

Affiliation:

1. Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

2. Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China

Abstract

In the realm of short-range radar applications, the focus on detecting “low, slow, and small” (LSS) targets has escalated, marking a pivotal aspect of critical area defense. This study pioneers the use of one-dimensional convolutional neural networks (1D-CNNs) for direct slow-time dimension radar feature extraction, sidestepping the complexity tied to frequency and wavelet domain transformations. It innovatively employs a network architecture enriched with multi-frequency multi-scale deformable convolution (MFMSDC) layers for nuanced feature extraction, integrates attention modules to foster comprehensive feature connectivity, and leverages linear operations to curtail overfitting. Through comparative evaluations and ablation studies, our methodology not only simplifies the analytic process but also demonstrates superior classification capabilities. This establishes a new benchmark for efficiently classifying low-altitude entities, such as birds and unmanned aerial vehicles (UAVs), thereby enhancing the precision and operational efficiency of radar detection systems.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Reference51 articles.

1. Non-cooperative UAV Target Recognition in Low-altitude Airspace Based on Motion Model;Chen;J. Beijing Univ. Aeronaut. Astronaut.,2019

2. Research on Civil UAV Countermeasure Technology;Wu;China Radio,2018

3. A comprehensive review for typical applications based upon unmanned aerial vehicle platform;Han;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2022

4. State-aware anti-drift object tracking;Han;IEEE Trans. Image Process.,2019

5. Spatial-temporal context-aware tracking;Han;IEEE Signal Process. Lett.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3