Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing

Author:

Linares Melissa12,Ni-Meister Wenge2

Affiliation:

1. CUNY Graduate Center, City University of New York, New York, NY 10016, USA

2. Hunter College, City University of New York, New York, NY 10065, USA

Abstract

Anthropogenic climate change is increasing the occurrence of wildfires, especially in northern high latitudes, leading to a shift in land surface climate. This study aims to determine the predominant climatic effects of fires in boreal forests to assess their impact on vegetation composition, surface albedo, and snow dynamics. The influence of fire-induced changes on Earth’s radiative forcing is investigated, while considering variations in burn severity and postfire vegetation structure. Six burn sites are explored in central Alaska’s boreal region, alongside six control sites, by utilizing Moderate Resolution Imaging Spectroradiometer (MODIS)-derived albedo, Leaf Area Index (LAI), snowmelt timing data, AmeriFlux radiation, National Land Cover Database (NLCD) land cover, and Monitoring Trends in Burn Severity (MTBS) data. Key findings reveal significant postfire shifts in land cover at each site, mainly from high- to low-stature vegetation. A continuous increase in postfire surface albedo and negative surface shortwave forcing was noted even after 12 years postfire, particularly during the spring and at high-severity burn areas. Results indicate that the cooling effect from increased albedo during the snow season may surpass the warming effects of earlier snowmelt. The overall climate impact of fires depends on burn severity and vegetation composition.

Funder

NASA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3