A Metadata-Enhanced Deep Learning Method for Sea Surface Height and Mesoscale Eddy Prediction

Author:

Zhu Rongjie1,Song Biao2,Qiu Zhongfeng3ORCID,Tian Yuan4

Affiliation:

1. School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 211800, China

2. School of Software, Nanjing University of Information Science and Technology, Nanjing 211800, China

3. School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 211800, China

4. Nanjing Institute of Technology, Nanjing 210094, China

Abstract

Predicting the mesoscale eddies in the ocean is crucial for advancing our understanding of the ocean and climate systems. Establishing spatio-temporal correlation among input data is a significant challenge in mesoscale eddy prediction tasks, especially for deep learning techniques. In this paper, we first present a deep learning solution based on a video prediction model to capture the spatio-temporal correlation and predict future sea surface height data accurately. To enhance the performance of the model, we introduced a novel metadata embedding module that utilizes neural networks to fuse remote sensing metadata with input data, resulting in increased accuracy. To the best of our knowledge, our model outperforms the state-of-the-art method for predicting sea level anomalies. Consequently, a mesoscale eddy detection algorithm will be applied to the predicted sea surface height data to generate mesoscale eddies in future. The proposed solution achieves competitive results, indicating that the prediction error for the eddy center position is 5.6 km for a 3-day prediction and 13.6 km for a 7-day prediction.

Funder

National Natural Science Foundation of China

Hillstone Networks Project of Network Security

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3