Wind Profile Reconstruction Based on Convolutional Neural Network for Incoherent Doppler Wind LiDAR

Author:

Li Jiawei1,Chen Chong2ORCID,Han Yuli1ORCID,Chen Tingdi12,Xue Xianghui12,Liu Hengjia1,Zhang Shuhua1,Yang Jing1ORCID,Sun Dongsong12

Affiliation:

1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. Hefei National Laboratory, Hefei 230088, China

Abstract

The rapid development of artificial intelligence (AI) and deep learning has revolutionized the field of data analysis in recent years, including signal data acquired by remote sensors. Light Detection and Ranging (LiDAR) technology is widely used in atmospheric research for measuring various atmospheric parameters. Wind measurement using LiDAR data has traditionally relied on the spectral centroid (SC) algorithm. However, this approach has limitations in handling LiDAR data, particularly in low signal-to-noise ratio (SNR) regions. To overcome these limitations, this study leverages the capabilities of customized deep-learning techniques to achieve accurate wind profile reconstruction. The study uses datasets obtained from the European Centre for Medium Weather Forecasting (ECMWF) Reanalysis v5 (ERA5) and the mobile Incoherent Doppler LiDAR (ICDL) system constructed by the University of Science and Technology of China. We present a simulation-based approach for generating wind profiles from the statistical data and the associated theoretical calculations. Whereafter, our team constructed a convolutional neural network (CNN) model based on the U-Net architecture to replace the SC algorithm for LiDAR data post-processing. The CNN-generated results are evaluated and compared with the SC results and the ERA5 data. This study highlights the potential of deep learning-based techniques in atmospheric research and their ability to provide more accurate and reliable results.

Funder

National Natural Science Foundation of China

Innovation Program for Quantum Science and Technology

Publisher

MDPI AG

Reference52 articles.

1. Imagenet classification with deep convolutional neural networks;Krizhevsky;Adv. Neural Inf.,2012

2. Deep learning;LeCun;Nature,2015

3. He, K.Z., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep Residual Learning for Image Recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA.

4. Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2018, January 18–23). Squeeze-and-Excitation Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.

5. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3