Estimation of All-Day Aerosol Optical Depth in the Beijing–Tianjin–Hebei Region Using Ground Air Quality Data

Author:

Zhang Wenhao12ORCID,Liu Sijia12,Chen Xiaoyang12,Mi Xiaofei3ORCID,Gu Xingfa13,Yu Tao13

Affiliation:

1. School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

2. Hebei Collaborative Innovation Center for Aerospace Remote Sensing Information Processing and Application, Langfang 065000, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Atmospheric aerosols affect climate change, air quality, and human health. The aerosol optical depth (AOD) is a widely utilized parameter for estimating the concentration of atmospheric aerosols. Consequently, continuous AOD monitoring is crucial for environmental studies. However, a method to continuously monitor the AOD throughout the day or night remains a challenge. This study introduces a method for estimating the All-Day AOD using ground air quality and meteorological data. This method allows for the hourly estimation of the AOD throughout the day in the Beijing–Tianjin–Hebei (BTH) region and addresses the lack of high temporal resolution monitoring of the AOD during the nighttime. The results of the proposed All-Day AOD estimation method were validated against AOD measurements from Advanced Himawari Imager (AHI) and Aerosol Robotic Network (AERONET). The R2 between the estimated AOD and AHI was 0.855, with a root mean square error of 0.134. Two AERONET sites in BTH were selected for analysis. The results indicated that the absolute error between the estimated AOD and AERONET was within acceptable limits. The estimated AOD showed spatial and temporal trends comparable to those of AERONET and AHI. In addition, the hourly mean AOD was analyzed for each city in BTH. The hourly mean AOD in each city exhibits a smooth change at night. In conclusion, the proposed AOD estimation method offers valuable data for investigating the impact of aerosol radiative forcing and assessing its influence on climate change.

Funder

Major Project of High-Resolution Earth Observation System

North China Institute of Aerospace Engineering Foundation of Doctoral Research

Science and Technology Research Projects of Higher Education Institutions in Hebei Province

North China Institute of Aerospace Engineering’s University-level Innovation Project

Hebei Province Graduate Student Innovation Ability Training Funding Project

Publisher

MDPI AG

Reference57 articles.

1. Gras, J.L. (2003). Encyclopedia of Atmospheric Sciences, Elsevier.

2. IPCC (2007). Climate Change 2007: Mitigation of Climate Change.

3. A Satellite View of Aerosols in the Climate System;Kaufman;Nature,2002

4. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Consistency Between Satellite-Derived and Modeled Estimates of the Direct Aerosol Effect;Myhre;Science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3