Studying the Internal Wave Generation Mechanism in the Northern South China Sea Using Numerical Simulation, Synthetic Aperture Radar, and In Situ Measurements

Author:

Zeng Kan12ORCID,Lyu Ruyin1,Li Hengyu1,Suo Rongqing3,Du Tao1,He Mingxia1

Affiliation:

1. Ocean Remote Sensing Institute, Ocean University of China, Qingdao 266003, China

2. Laoshan Laboratory, Qingdao 266237, China

3. Wisdom Blue Oceanographic Engineering Institute, Qingdao 266555, China

Abstract

The internal waves in the South China Sea are highly correlated with the tidal currents in the Luzon Strait, which makes it possible to establish an internal wave prediction model based on internal wave kinematics. However, the kinematic model requires the input of the exact location and time of the initial internal wave for which the generation mechanism of internal waves in the northern South China Sea must be well understood. By analyzing the internal wave field in the northern South China Sea (SCS) simulated using the MIT General Circulation Model (MITgcm) and observations from satellite synthetic aperture radar (SAR) and mooring temperature–salinity–depth (TSD) chains, the source regions and propagation initiation times of internal waves are identified for three typical tidal phases, i.e., the diurnal-tide-dominated phase (DTP), transition tide phase (TTP), and semidiurnal-tide-dominated phase (STP). The generation procedures of Type A and Type B internal waves are discussed in detail with those data. The present study reveals that Type A and Type B waves are generated at the eastern and western ridges, respectively, and both commence their westward propagation at the peak of the eastward tidal flow. The dynamics of lee waves and the resonance effect with double ridges constitute the generation mechanisms of internal waves in the northern SCS. Combined with varying configurations of tidal conditions, topography, and stratification, the generation procedures of Type A and Type B waves in the DTP, TTP, and STP are elucidated with the generation mechanism in a unified and self-consistent way. In short, during DTP, weaker A waves alternate with weaker B waves each day; during TTP, strong A waves and strong B waves appear alternately every day; and there are two weak A waves per day during the STP. The generation mechanism can help in developing future empirical models for generating internal waves using tidal currents, topography, and stratification without requiring complex fluid dynamics calculations.

Funder

Qingdao Institute of Collaborative Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3