Lightweight Deep Neural Network with Data Redundancy Removal and Regression for DOA Estimation in Sensor Array

Author:

Liu Aifei1ORCID,Guo Jiapeng1,Arnatovich Yauhen1,Liu Zhiling2

Affiliation:

1. The School of Software, Northwestern Polytechnical University, Xi’an 710072, China

2. Nanjing Electronic Equipment Institute, Nanjing 210007, China

Abstract

In this paper, a lightweight deep neural network (DNN) for direction of arrival (DOA) estimation is proposed, of which the input vector is designed to remove data redundancy as well as remaining DOA information. By exploring the Vandermonde property of the steering vector of a uniform linear array (ULA), the size of the newly designed input vector is greatly reduced. Furthermore, the DOA estimation is designed as a regression problem instead of a classification problem; that is, the lightweight DNN designs the output vector as the estimated DOAs of sources, of which the size is much shorter than that of the spatial spectrum used as the output vector in the conventional DNN. The reductions in the sizes of input and output vectors lead to a reduction in the sizes of hidden layers, achieving lightweightness of the neural network. The analysis illustrates that when the number of sensors is 22, the number of parameters in the lightweight DNN is three orders of magnitude less than that in the conventional DNN. The simulation results demonstrate the lightweight DNN can provide high DOA estimation accuracy with the shortest testing time. It performs better than the conventional DNN. Furthermore, it is superior to traditional solutions such as the multiple signal classification (MUSIC) method and conventional beamforming (CBF) method in harsh conditions like low signal-to-noise ratios (SNRs), closely spaced sources, and few snapshots.

Funder

Natural Science Basic Research Program of Shaanxi Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3