Potential Modulation of Aerosol on Precipitation Efficiency in Southwest China

Author:

Zhao Pengguo123ORCID,Liu Xiaoran1,Zhao Chuanfeng45ORCID

Affiliation:

1. Chongqing Institute of Meteorological Sciences, Chongqing 401147, China

2. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China

3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100045, China

4. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China

5. Southwest United Graduate School, Kunming 650092, China

Abstract

The aerosol–cloud–precipitation correlation has been a significant scientific topic, primarily due to its remarkable uncertainty. However, the possible modulation of aerosol on the precipitation capacity of clouds has received limited attention. In this study, we utilized multi-source data on aerosol, cloud properties, precipitation, and meteorological factors to investigate the impact of aerosols on precipitation efficiency (PE) in the Sichuan Basin (SCB) and Yun-nan-Guizhou Plateau (YGP), where the differences between terrain and meteorological environment conditions were prominent. In the two study regions, there were significant negative correlations between the aerosol index (AI) and PE in spring, especially in the YGP, while the correlations between the AI and PE in other seasons were not as prominent as in spring. In spring, aerosol significantly inhibited both the liquid water path (LWP) and the ice water path (IWP) in the YGP, but negatively correlated with the IWP and had no significant relationship with the LWP in the SCB. Aerosol inhibited precipitation in the two regions mainly by reducing cloud droplet effective radius, indicating that warm clouds contributed more to precipitation in spring. The suppressive impact of aerosols on precipitation serving as the numerator of PE is greater than that of the cloud water path as the denominator of PE, resulting in a negative correlation between aerosol and PE. The AI–PE relationship is significantly dependent on meteorological conditions in the YGP, but not in the SCB, which may be related to the perennial cloud cover and stable atmosphere in the SCB. In the future, as air quality continues to improve, precipitation efficiency may increase due to the decrease in aerosol concentration, and of course, the spatio-temporal heterogeneity of the aerosol–cloud–precipitation relationship may become more significant.

Funder

Yunnan Southwest United Graduate School Science and Technology Special Project

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Technological Innovation Capacity Enhancement Program of Chengdu University of Information Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3