Using Ensemble Learning for Remote Sensing Inversion of Water Quality Parameters in Poyang Lake

Author:

Peng Changchun1ORCID,Xie Zhijun12ORCID,Jin Xing1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China

2. Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, China

Abstract

Inland bodies of water, such as lakes, play a crucial role in sustaining life and supporting ecosystems. However, with the rapid development of socio-economics, water resources are facing serious pollution problems, such as the eutrophication of water bodies and degradation of wetlands. Therefore, the monitoring, management, and protection of inland water resources are particularly important. In past research, empirical models and machine learning models have been widely used for the water quality assessment of inland lakes. Due to the complexity of the optical properties of inland lake water bodies, the performance of these models is often limited. To overcome the limitations of these models, this study uses in situ water quality data from 2017 to 2018 and multispectral (MS) remote sensing data from Sentinel-2 to construct experimental samples of Poyang Lake. Based on these experimental samples, we constructed a spatio-temporal ensemble model (STE) to evaluate four common water quality parameters: chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD). The model adopts an ensemble learning strategy, improving the model’s performance by merging multiple advanced machine learning algorithms. We introduced several indices related to water quality parameters as auxiliary variables, such as NDCI and Enhanced Three, and used band data and these auxiliary variables as predictive variables, thereby greatly enhancing the predictive potential of the model.The results show that the inversion accuracy of these four inversion models is high (R2 of 0.94, 0.88, 0.92, and 0.93; RMSE of 1.15, 0.01, 0.02, and 0.02; MAE of 0.81, 0.01, 0.09, and 0.10), indicating that the STE model has good evaluation accuracy. Meanwhile, we used the STE model to reveal the spatio-temporal distribution of Chl-a, TP, TN, and COD from 2017 to 2018, and analyzed their seasonal and spatial variation rules. The results of this study not only provide an effective and practical method for monitoring and managing water quality parameters in inland lakes, but also provide water security for socio-economic and ecological environmental safety.

Funder

National Natural Science Foundation of China

Ningbo public welfare project

Natural Science Foundation of Zhejiang Province

international cooperation project of Ningbo

Science and Technology Innovation 2025 Major Project of Ningbo

Ningbo Fenghua District industrial chain key core technology “unveiled the commander” project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3