Design and Validation of a Portable Handheld Device to Produce Fine Fibers Using Centrifugal Forces

Author:

Potter Gregory,Barbosa Raul,Villarreal Alexa,Salinas Alexandra,Guzman Hector,De Leon Heriberto,Ortega Javier A.ORCID,Lozano Karen

Abstract

In the present research project, a novel portable battery-powered handheld device able to produce micron and submicron fibers using centrifugal forces is proposed. The design includes spinnerets with a clamshell configuration with multiple chambers or reservoirs (2, 4, and 8) and different exit orifice diameters (400, 500, 600, and 800 µm). The rotational speed is controlled via an Arduino microcontroller. To validate the design, a series of experiments were conducted and the effect of the orifice diameter, number of chambers, and velocity on the resulting fibers’ diameter and yield was studied. For the experiments, a polymeric solution of Polyvinyl Alcohol (PVA) was prepared. The fiber yield was gravimetrically quantified, and the fiber morphology and diameter were analyzed by means of scanning electron microscopy (SEM). The experimental results showed that spinnerets with an orifice diameter of 500 microns yielded the greatest amount of fibers (0.0777 g). In addition, the number of chambers also affected the amount of fibers produced, and it was determined that the fiber diameter size is dependent on the spinneret speed. Fibers 80 nm in diameter were observed at 6500 rpm.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3