First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole

Author:

Torims Toms,Pikurs Guntis,Gruber Samira,Vretenar Maurizio,Ratkus AndrisORCID,Vedani MaurizioORCID,López Elena,Brückner Frank

Abstract

Continuous developments in additive manufacturing (AM) technology are opening up opportunities in novel machining, and improving design alternatives for modern particle accelerator components. One of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the radio frequency quadrupole (RFQ) linear accelerator, which is used as an injector for all large modern proton and ion accelerator systems. For this reason, the RFQ has been selected by a wide European collaboration participating in the AM developments of the I.FAST (Innovation Fostering in Accelerator Science and Technology) Horizon 2020 project. The RFQ is as an excellent candidate to show how sophisticated pure copper accelerator components can be manufactured by AM and how their functionalities can be boosted by this evolving technology. To show the feasibility of the AM process, a prototype RFQ section has been designed, corresponding to one-quarter of a 750 MHz 4-vane RFQ, which was optimised for production with state-of-the-art laser powder bed fusion (L-PBF) technology, and then manufactured in pure copper. To the best of the authors’ knowledge, this is the first RFQ section manufactured in the world by AM. Subsequently, geometrical precision and surface roughness of the prototype were measured. The results obtained are encouraging and confirm the feasibility of AM manufactured high-tech accelerator components. It has been also confirmed that the RFQ geometry, particularly the critical electrode modulation and the complex cooling channels, can be successfully realised thanks to the opportunities provided by the AM technology. Further prototypes will aim to improve surface roughness and to test vacuum properties. In parallel, laboratory measurements will start to test and improve the voltage holding properties of AM manufactured electrode samples.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference19 articles.

1. The Radio Frequency Quadrupole (RFQ);Lombardi

2. High-frequency Compact Rfqs for Medical and Industrial Applications. LINAC 4 RFQ Design, Construction, Commissioning, and Operation. CERN 2018https://indico.cern.ch/event/754020/contributions/3123638/attachments/1713693/2763818/L4SpareRFQ_C_Rossi_11092018.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3