Fabrication and First Full Characterisation of Timing Properties of 3D Diamond Detectors

Author:

Anderlini Lucio,Bellini MarcoORCID,Corsi ChiaraORCID,Lagomarsino Stefano,Lucarelli Chiara,Passaleva GiovanniORCID,Sciortino SilvioORCID,Veltri Michele

Abstract

Tracking detectors at future high luminosity hadron colliders are expected to be able to stand unprecedented levels of radiation as well as to efficiently reconstruct a huge number of tracks and primary vertices. To face the challenges posed by the radiation damage, new extremely radiation hard materials and sensor designs will be needed, while the track and vertex reconstruction problem can be significantly mitigated by the introduction of detectors with excellent timing capabilities. Indeed, the time coordinate provides extremely powerful information to disentangle overlapping tracks and hits in the harsh hadronic collision environment. Diamond 3D pixel sensors optimised for timing applications provide an appealing solution to the above problems as the 3D geometry enhances the already outstanding radiation hardness and allows to exploit the excellent timing properties of diamond. We report here the first full timing characterisation of 3D diamond sensors fabricated by electrode laser graphitisation in Florence. Results from a 270MeV pion beam test of a first prototype and from tests with a β source on a recently fabricated 55×55μm2 pitch sensor are discussed. First results on sensor simulation are also presented.

Publisher

MDPI AG

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of the Radiation Tolerance and Timing Properties of 3D Diamond Detectors;Sensors;2022-11-11

2. 4D tracking: present status and perspectives;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-10

3. A 4D diamond detector for HL-LHC and beyond;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3