High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser

Author:

Yang Xi1ORCID,Yu Lihua1,Smaluk Victor1,Shaftan Timur1

Affiliation:

1. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

To align with the global trend of integrating synchrotron light source (SLS) and free electron laser (FEL) facilities on one site, in line with examples such as SPring-8 and SACLA in Japan and ELETTRA and FERMI in Italy, we actively explore FEL options leveraging the ultralow-emittance electron beam of the NSLS-II upgrade. These options show promising potential for synergy with storage ring (SR) operations, thereby significantly enhancing our facility’s capabilities. Echo-enabled harmonic generation (EEHG) is well-suited to SR-based FELs, and has already been demonstrated with the capability of generating extremely narrow bandwidth as well as high brightness, realized using diffraction-limited short pulses in transverse planes and Fourier transform-limited bandwidth in the soft X-ray spectrum. However, regarding a conventional EEHG scheme, the combination of the shortest seed laser wavelength (256 nm) and highest harmonic (200) sets the short wavelength limit to λ = 1.28 nm. To further extend the short wavelength limit down to the tender and hard X-ray region, a vital option is to shorten the seed laser wavelength. Thanks to recent advances in high harmonic generation (HHG), packing 109 photons at one harmonic within a few-femtosecond pulse could turn such a novel HHG source into an ideal seeding for EEHG. Thus, compared to the cascaded EEHG, the HHG seeding option could not only lower the cost, but also free the SR space for accommodating more user beamlines. Moreover, to mitigate the SASE background noise on the sample and detector, we combine the HHG seeding EEHG with the crab cavity short pulse scheme for maximum benefit.

Funder

Brookhaven National Laboratory Directed Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3