Abstract
Based on the particle-flow paradigm, a new hadronic calorimeter (HCAL) with scintillating glass tiles is proposed to address major challenges from precision measurements of jets at the future lepton colliders, such as the Circular Electron Positron Collider (CEPC). Tiles of high-density scintillating glass, with a high-energy sampling fraction, can significantly improve the hadronic energy resolution in the low-energy region (typically below 10 GeV for major jet components at Higgs factories). The hadronic energy resolution of single hadrons and the effects of key parameters of scintillating glass have been evaluated in the Geant4 full simulation, followed by the physics benchmark studies on the Higgs boson with jets in the final state. R&D efforts of scintillating glass materials are ongoing within a dedicated collaboration since 2021 with the aim to achieve a high light yield, a high density, and a low cost. Measurements have been performed for the first batches of scintillating glass samples including the light yield, emission and scintillation spectra, scintillation decay times, and cosmic responses. An optical simulation model of a single scintillating glass tile has been established to provide guidance in the development of scintillating glass. Highlights of the expected detector performance and the latest scintillating glass developments are presented in this contribution.
Funder
CAS Center for Excellence in Particle Physics
Chinese Academy of Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献