Abstract
The analysis of material composition by ion-beam analysis (IBA) is becoming a standard method, similar to electron microscopy. A pool of IBA methods exists, from which the combination of particle-induced-X-ray emission (PIXE), particle induced gamma-ray analysis (PIGE), nuclear-reaction-analysis (NRA), and Rutherford-backscattering-spectrometry (RBS) provides the most complete analysis over the whole periodic table in a single measurement. Yet, for a highly resolved and accurate IBA analysis, a sophisticated technical setup is required integrating the detectors, beam optics, and sample arrangement. A new end-station developed and installed in Forschungszentrum Jülich provides these capabilities in combination with high sample throughput and result accuracy. Mechanical tolerances limit the device accuracy to 3% for RBS. Continuous pumping enables 5 × 10−8 mbar base pressure with vibration amplitudes < 0.1 µm. The beam optics achieves a demagnification of 24–34, suitable for µ-beam analysis. An in-vacuum manipulator enables scanning 50 × 50 mm² sample areas with 10 nm accuracy. The setup features the above-mentioned IBA detectors, enabling a broad range of analysis applications such as the operando analysis of batteries or the post-mortem analysis of plasma-exposed samples with up to 3000 discrete points per day. Custom apertures and energy resolutions down to 11 keV enable separation of Fe and Cr in RBS. This work presents the technical solutions together with the quantification of these challenges and their success in the form of a technical reference.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献