Tracker-in-Calorimeter (TIC) Project: A Calorimetric New Solution for Space Experiments

Author:

Bigongiari GabrieleORCID,Adriani OscarORCID,Ambrosi GiovanniORCID,Azzarello Philipp,Basti Andrea,Berti Eugenio,Bertucci BrunaORCID,Bonechi Lorenzo,Bongi Massimo,Bottai Sergio,Brianzi Mirko,Brogi PaoloORCID,Castellini Guido,Catanzani Enrico,Checchia CaterinaORCID,D’Alessandro Raffaello,Detti Sebastiano,Duranti Matteo,Finetti Noemi,Formato ValerioORCID,Ionica Maria,Maestro Paolo,Maletta Fernando,Marrocchesi Pier Simone,Mori NicolaORCID,Pacini LorenzoORCID,Papini Paolo,Ricciarini Sergio Bruno,Silvestre Gianluigi,Spillantini Piero,Starodubtsev Oleksandr,Stolzi Francesco,Suh Jung Eun,Sulaj Arta,Tiberio Alessio,Vannuccini Elena

Abstract

A space-based detector dedicated to measurements of γ-rays and charged particles has to achieve a balance between different instrumental requirements. A good angular resolution is necessary for the γ-rays, whereas an excellent geometric factor is needed for the charged particles. The tracking reference technique of γ-ray physics is based on a pair-conversion telescope made of passive material (e.g., tungsten) coupled with sensitive layers (e.g., silicon microstrip). However, this kind of detector has a limited acceptance because of the large lever arm between the active layers, needed to improve the track reconstruction capability. Moreover, the passive material can induce fragmentation of nuclei, thus worsening charge reconstruction performances. The Tracker-In-Calorimeter (TIC) project aims to solve all these drawbacks. In the TIC proposal, the silicon sensors are moved inside a highly-segmented isotropic calorimeter with a couple of external scintillators dedicated to charge reconstruction. In principle, this configuration has a good geometrical factor, and the angle of the γ-rays can be precisely reconstructed from the lateral profile of the electromagnetic shower sampled, at different depths in the calorimeter, by silicon strips. The effectiveness of this approach has been studied with Monte Carlo simulations and validated with beam test data of a small prototype.

Publisher

MDPI AG

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3