Secondary Beams at High-Intensity Electron Accelerator Facilities
-
Published:2024-01-04
Issue:1
Volume:8
Page:1
-
ISSN:2410-390X
-
Container-title:Instruments
-
language:en
-
Short-container-title:Instruments
Author:
Battaglieri Marco1, Bianconi Andrea23, Bondí Mariangela4, De Vita Raffaella1, Fulci Antonino45, Gosta Giulia2, Grazzi Stefano15, Jo Hyon-Suk6, Lee Changhui6, Mandaglio Giuseppe45, Mascagna Valerio23ORCID, Nagorna Tetiana1, Pilloni Alessandro45, Spreafico Marco17, Tagliapietra Luca J.8, Venturelli Luca23ORCID, Vittorini Tommaso17
Affiliation:
1. Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy 2. Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy 3. Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy 4. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95125 Catania, Italy 5. Dipartimento di Scienze MIFT, Università degli Studi di Messina, 98166 Messina, Italy 6. Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea 7. Dipartimento di Fisica, Universitá degli Studi di Genova, 16126 Genova, Italy 8. NEVNUCLAB, 123 W Nye Lane, Carson City, NV 89706, USA
Abstract
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, electron/positron) is contained in the thick target, deep penetrating particles (muons, neutrinos, and light dark matter particles) propagate over a long distance, producing high-intensity secondary beams. Using sophisticated Monte Carlo simulations based on FLUKA and GEANT4, we explored the characteristics of secondary muons and neutrinos and (hypothetical) dark scalar particles produced by the interaction of the Jefferson Lab 11 GeV intense electron beam with the experimental Hall-A beam dump. Considering the possible beam energy upgrade, this study was repeated for a 22 GeV CEBAF beam.
Funder
National Research Foundation of Korea European Union—Next Generation EU and by the Ministry of University and Research
Reference49 articles.
1. Battaglieri, M., Belloni, A., Chou, A., Cushman, P., Echenard, B., Essig, R., Estrada, J., Feng, J.L., Flaugher, B., and Fox, P.J. (2017, January 23–25). US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report. Proceedings of the U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, MD, USA. 2. The potential of the ILC beam dump for high-intensity and large-area irradiation field with atmospheric-like neutrons and muons;Sakaki;Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip.,2023 3. Accardi, A., Achenbach, P., Adhikari, D., Afanasev, A., Akondi, C.S., Akopov, N., Albaladejo, M., Albataineh, H., Albrecht, M., and Almeida-Zamora, B. (2023). Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab. arXiv. 4. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications;Cerutti;Nucl. Data Sheets,2014 5. Ferrari, A., Sala, P.R., Fasso, A., and Ranft, J. (2005). FLUKA: A Multi-Particle Transport Code (Program Version 2005), CERN.
|
|