First Simulations for the EuAPS Betatron Radiation Source: A Dedicated Radiation Calculation Code

Author:

Frazzitta Andrea12,Bacci Alberto1,Carbone Arianna1ORCID,Cianchi Alessandro34ORCID,Curcio Alessandro5,Drebot Illya1,Ferrario Massimo5,Petrillo Vittoria16,Conti Marcello Rossetti1ORCID,Samsam Sanae1,Serafini Luca1,Rossi Andrea Renato1ORCID

Affiliation:

1. Department of Physics, INFN—Milan, Via Celoria, 16-20133 Milan, Italy

2. Department of Physics, University of Rome “La Sapienza”, p.le A. Moro, 2-00185 Rome, Italy

3. Department of Physics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1-00133 Rome, Italy

4. Department of Physics, INFN—Roma Tor Vergata, Via della Ricerca Scientifica, 1-00133 Rome, Italy

5. Laboratori Nazionali di Frascati, v.le E. Fermi, 54-00044 Frascati, Italy

6. Department of Physics, University of Milan, Via Celoria, 16-20133 Milan, Italy

Abstract

X-ray production through betatron radiation emission from electron bunches is a valuable resource for several research fields. The EuAPS (EuPRAXIA Advanced Photon Sources) project, within the framework of EuPRAXIA, aims to provide 1–10 keV photons (X-rays), developing a compact plasma-based system designed to exploit self-injection processes that occur in the highly nonlinear laser-plasma interaction (LWFA) to drive electron betatron oscillations. Since the emitted radiation spectrum, intensity, angular divergence, and possible coherence strongly depend on the properties of the self-injected beam, accurate preliminary simulations of the process are necessary to evaluate the optimal diagnostic device specifications and to provide an initial estimate of the source’s performance. A dedicated tool for these tasks has been developed; electron trajectories from particle-in-cell (PIC) simulations are currently undergoing numerical analysis through the calculation of retarded fields and spectra for various plasma and laser parameter combinations. The implemented forward approach evaluation of the fields could allow for the integration of the presented scheme into already existing PIC codes. The spectrum calculation is thus performed in detector time, giving a linear complex exponential phase; this feature allows for a semi-analitical Fourier transform evaluation. The code structure and some trajectories analysis results are presented.

Funder

European Union—Next Generation EU

Publisher

MDPI AG

Subject

Instrumentation

Reference14 articles.

1. Ferrario, M., Assmann, R.W., Avaldi, L., Bolognesi, P., Catalano, R., Cianchi, A., Cirrone, P., Falone, A., Ferro, T., and Gizzi, L. (2023, April 06). EuPRAXIA Advanced Photon Sources PNRR_EuAPS Project. Available online: https://www.lnf.infn.it/sis/preprint/getfilepdf.php?filename=INFN-23-12-LNF.pdf.

2. EuPRAXIA Conceptual Design Report;Assmann;Eur. Phys. J. Spec. Top.,2020

3. Physics of laser-driven plasma-based electron accelerators;Esarey;Rev. Mod. Phys.,2009

4. Femtosecond X rays from laser-plasma accelerators;Corde;Rev. Mod. Phys.,2013

5. High-Brilliance Betatron γ-ray Source Powered by Laser-Accelerated Electrons;Ferri;Phys. Rev. Lett.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3