The Synthesis, Structure, and Luminescent Properties of TmMgB5O10 Crystals

Author:

Volkova Elena A.1ORCID,Maltsev Victor V.1,Antipin Alexander M.2ORCID,Deyneko Dina V.3ORCID,Nikiforov Ivan V.3,Spassky Dmitry A.45,Marchenko Ekaterina I.1,Mitina Diana D.1,Kosorukov Vladimir L.1,Yapaskurt Vasiliy O.1,Naprasnikov Daniil A.1,Koporulina Elizaveta V.16

Affiliation:

1. Faculty of Geology, Moscow State University, 119991 Moscow, Russia

2. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, The Russian Academy of Sciences, 119333 Moscow, Russia

3. Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia

4. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia

5. Institute of Physics, University of Tartu, 50411 Tartu, Estonia

6. Melnikov Research Institute of Comprehensive Exploitation of Mineral Resources, The Russian Academy of Sciences, 111020 Moscow, Russia

Abstract

TmMgB5O10 spontaneous crystals were synthesized via the flux-growth technique from a K2Mo3O10-based solvent. The crystal structure of the compound was solved and refined within the space group P21/n. The first principles calculations of the electronic structure reveal that TmMg-pentaborate with an ideal not defected crystal structure is an insulator with an indirect energy band gap of approximately 6.37 eV. Differential scanning calorimetry measurements and powder X-ray diffraction studies of heat-treated solids show that TmMgB5O10 is an incongruent melting compound. A characteristic band of the Tm3+ cation corresponding to the 3H6 → 1D2 transition is observed in the photoluminescence excitation spectra of TmMg-borate. The as-obtained crystals exhibit intense blue emission with the emission peaks centered at 455, 479, 667, and 753 nm. The most intensive band corresponds to the 1D2 → 3F4 transition. TmMgB5O10 solids demonstrate the thermal stability of photoluminescence.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3