Enhancing Efficiency of Nitrate Reduction to Ammonia by Fe and Co Nanoparticle-Based Bimetallic Electrocatalyst

Author:

Kuznetsova Irina1ORCID,Lebedeva Olga1ORCID,Kultin Dmitry1ORCID,Mashkin Mikhail1ORCID,Kalmykov Konstantin1,Kustov Leonid123

Affiliation:

1. Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

2. N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia

3. Institute of Ecology and Engineering, National Science and Technology University “MISiS”, Leninsky Prospect 4, Moscow 119049, Russia

Abstract

The green and sustainable electrocatalytic conversion of nitrogen-containing compounds to ammonia is currently in high demand in order to replace the eco-unfriendly Haber–Bosch process. Model catalysts for the nitrate reduction reaction were obtained by electrodeposition of metal Co, Fe, and bimetallic Fe/Co nanoparticles from aqueous solutions onto a graphite substrate. The samples were characterized by the following methods: SEM, XRD, XPS, UV–vis spectroscopy, cyclic (and linear) voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. In addition, the determination of the electrochemically active surface was also performed for all electrocatalysts. The best electrocatalyst was a sample containing Fe-nanoparticles on the layer of Co-nanoparticles, which showed a Faradaic efficiency of 58.2% (E = −0.785 V vs. RHE) at an ammonia yield rate of 14.6 μmol h−1 cm−2 (at ambient condition). An opinion was expressed to elucidate the mechanism of coordinated electrocatalytic action of a bimetallic electrocatalyst. This work can serve primarily as a starting point for future investigations on electrocatalytic conversion reactions to ammonia using model catalysts of the proposed type.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3