TGC-ARG: Anticipating Antibiotic Resistance via Transformer-Based Modeling and Contrastive Learning

Author:

Dong Yihan1,Quan Hanming1,Ma Chenxi1,Shan Linchao1,Deng Lei1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

In various domains, including everyday activities, agricultural practices, and medical treatments, the escalating challenge of antibiotic resistance poses a significant concern. Traditional approaches to studying antibiotic resistance genes (ARGs) often require substantial time and effort and are limited in accuracy. Moreover, the decentralized nature of existing data repositories complicates comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce a novel computational framework named TGC-ARG designed to predict potential ARGs. This framework takes protein sequences as input, utilizes SCRATCH-1D for protein secondary structure prediction, and employs feature extraction techniques to derive distinctive features from both sequence and structural data. Subsequently, a Siamese network is employed to foster a contrastive learning environment, enhancing the model’s ability to effectively represent the data. Finally, a multi-layer perceptron (MLP) integrates and processes sequence embeddings alongside predicted secondary structure embeddings to forecast ARG presence. To evaluate our approach, we curated a pioneering open dataset termed ARSS (Antibiotic Resistance Sequence Statistics). Comprehensive comparative experiments demonstrate that our method surpasses current state-of-the-art methodologies. Additionally, through detailed case studies, we illustrate the efficacy of our approach in predicting potential ARGs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3