Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging

Author:

Huang Chun-Han123,Khan Palwasha12,Xu Sulan12,Cohen Jules14,Georgakis Georgios V.15,Turkman Nashaat123ORCID

Affiliation:

1. Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA

2. Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA

3. Department of Biomedical Engineering, Stony Brook University, Long Island, NY 11794, USA

4. Department of Medicine, School of Medicine, Stony Brook University, Long Island, NY 11794, USA

5. Department of Surgery, School of Medicine, Stony Brook University, Long Island, NY 11794, USA

Abstract

The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.

Funder

Stony Brook Cancer Center Translational Research in Breast Cancer

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3