iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features

Author:

Li Honghao1,Jiang Liangzhen23,Yang Kaixiang4,Shang Shulin1,Li Mingxin1,Lv Zhibin1ORCID

Affiliation:

1. College of Biomedical Engineering, Sichuan University, Chengdu 610041, China

2. College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

3. Country Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China

4. College of Software Engineering, Sichuan University, Chengdu 610041, China

Abstract

Neuropeptides are biomolecules with crucial physiological functions. Accurate identification of neuropeptides is essential for understanding nervous system regulatory mechanisms. However, traditional analysis methods are expensive and laborious, and the development of effective machine learning models continues to be a subject of current research. Hence, in this research, we constructed an SVM-based machine learning neuropeptide predictor, iNP_ESM, by integrating protein language models Evolutionary Scale Modeling (ESM) and Unified Representation (UniRep) for the first time. Our model utilized feature fusion and feature selection strategies to improve prediction accuracy during optimization. In addition, we validated the effectiveness of the optimization strategy with UMAP (Uniform Manifold Approximation and Projection) visualization. iNP_ESM outperforms existing models on a variety of machine learning evaluation metrics, with an accuracy of up to 0.937 in cross-validation and 0.928 in independent testing, demonstrating optimal neuropeptide recognition capabilities. We anticipate improved neuropeptide data in the future, and we believe that the iNP_ESM model will have broader applications in the research and clinical treatment of neurological diseases.

Funder

National Natural Science Foundation of China

the Chengdu Science and Technology Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3