3D-QSAR, Scaffold Hopping, Virtual Screening, and Molecular Dynamics Simulations of Pyridin-2-one as mIDH1 Inhibitors

Author:

Wang Yifan1,Jia Shunjiang1,Wang Fan2,Jiang Ruizhe2,Yin Xiaodan3,Wang Shuo4,Jin Ruyi1,Guo Hui1,Tang Yuping1,Wang Yuwei1ORCID

Affiliation:

1. College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China

2. Second Clinical Medical College, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China

3. State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China

4. College of Pharmacy, Lanzhou University, Lanzhou 730000, China

Abstract

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure–activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was −93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Science and Technology Innovative Talent Program of Shaanxi University of Chinese Medicine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3