Cholinesterase Inhibition and Antioxidative Capacity of New Heteroaromatic Resveratrol Analogs: Synthesis and Physico—Chemical Properties

Author:

Mlakić Milena1ORCID,Talić Stanislava2ORCID,Odak Ilijana2ORCID,Barić Danijela3ORCID,Šagud Ivana4ORCID,Škorić Irena1ORCID

Affiliation:

1. Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia

2. Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina

3. Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

4. Croatian Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, HR-10000 Zagreb, Croatia

Abstract

The targeted compounds in this research, resveratrol analogs 1–14, were synthesized as mixtures of isomers by the Wittig reaction using heterocyclic triphenylphosphonium salts and various benzaldehydes. The planned compounds were those possessing the trans-configuration as the biologically active trans-resveratrol. The pure isomers were obtained by repeated column chromatography in various isolated yields depending on the heteroaromatic ring. It was found that butyrylcholinesterase (BChE) was more sensitive to the heteroaromatic resveratrol analogs than acetylcholinesterase (AChE), except for 6, the methylated thiophene derivative with chlorine, which showed equal inhibition toward both enzymes. Compounds 5 and 8 achieved the highest BChE inhibition with IC50 values of 22.9 and 24.8 μM, respectively. The same as with AChE and BChE, methylated thiophene subunits of resveratrol analogs showed better enzyme inhibition than unmethylated ones. Two antioxidant spectrophotometric methods, DPPH and CUPRAC, were applied to determine the antioxidant potential of new heteroaromatic resveratrol analogs. The molecular docking of these compounds was conducted to visualize the ligand-active site complexes’ structure and identify the non-covalent interactions responsible for the complex’s stability, which influence the inhibitory potential. As ADME properties are crucial in developing drug product formulations, they have also been addressed in this work. The potential genotoxicity is evaluated by in silico studies for all compounds synthesized.

Funder

University of Zagreb

Federal Ministry of Education and Science, Bosnia and Herzegovina

University of Zagreb (Croatia) Computing Centre

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3