The Effects and Mechanism of ATM Kinase Inhibitors in Toxoplasma gondii

Author:

Xue Yangfei1,Ying Zhu1,Wang Fei1,Yin Meng1,Pei Yanqun1,Liu Jing123ORCID,Liu Qun123

Affiliation:

1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

2. National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

3. Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

Abstract

Toxoplasma gondii, an important opportunistic pathogen, underscores the necessity of developing novel therapeutic drugs and identifying new drug targets. Our findings indicate that the half-maximal inhibitory concentrations (IC50) of KU60019 and CP466722 (abbreviated as KU and CP) against T. gondii are 0.522 μM and 0.702 μM, respectively, with selection indices (SI) of 68 and 10. Treatment with KU and CP affects the in vitro growth of T. gondii, inducing aberrant division in the daughter parasites. Transmission electron microscopy reveals that KU and CP prompt the anomalous division of T. gondii, accompanied by cellular enlargement, nuclear shrinkage, and an increased dense granule density, suggesting potential damage to parasite vesicle transport. Subsequent investigations unveil their ability to modulate the expression of certain secreted proteins and FAS II (type II fatty acid synthesis) in T. gondii, as well as including the dot-like aggregation of the autophagy-related protein ATG8 (autophagy-related protein 8), thereby expediting programmed death. Leveraging DARTS (drug affinity responsive target stability) in conjunction with 4D-Label-free quantitative proteomics technology, we identified seven target proteins binding to KU, implicated in pivotal biological processes such as the fatty acid metabolism, mitochondrial ATP transmission, microtubule formation, and Golgi proteins transport in T. gondii. Molecular docking predicts their good binding affinity. Furthermore, KU has a slight protective effect on mice infected with T. gondii. Elucidating the function of those target proteins and their mechanism of action with ATM kinase inhibitors may potentially enhance the treatment paradigm for toxoplasmosis.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3