Enhancing Localization Efficiency and Accuracy in Wireless Sensor Networks

Author:

Fawad Muhammad1,Khan Muhammad1ORCID,Ullah Khalil2,Alasmary Hisham3ORCID,Shehzad Danish4,Khan Bilal5ORCID

Affiliation:

1. Department of Computer Science & Information Technology, University of Malakand, Chakdara 18800, Pakistan

2. Department of Software Engineering, University of Malakand, Chakdara 18800, Pakistan

3. Department of Computer Science, College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia

4. Department of Computer Science, Superior University, Lahore 54000, Pakistan

5. Department of Computer Science, National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan

Abstract

Accuracy is the vital indicator in location estimation used in many scenarios, such as warehousing, tracking, monitoring, security surveillance, etc., in a wireless sensor network (WSN). The conventional range-free DV-Hop algorithm uses hop distance to estimate sensor node positions but has limitations in terms of accuracy. To address the issues of low accuracy and high energy consumption of DV-Hop-based localization in static WSNs, this paper proposes an enhanced DV-Hop algorithm for efficient and accurate localization with reduced energy consumption. The proposed method consists of three steps: first, the single-hop distance is corrected using the RSSI value for a specific radius; second, the average hop distance between unknown nodes and anchors is modified based on the difference between actual and estimated distances; and finally, the least-squares approach is used to estimate the location of each unknown node. The proposed algorithm, named Hop-correction and energy-efficient DV-Hop (HCEDV-Hop), is executed and evaluated in MATLAB to compare its performance with benchmark schemes. The results show that HCEDV-Hop improves localization accuracy by an average of 81.36%, 77.99%, 39.72%, and 9.96% compared to basic DV-Hop, WCL, improved DV-maxHop, and improved DV-Hop, respectively. In terms of message communication, the proposed algorithm reduces energy usage by 28% compared to DV-Hop and 17% compared to WCL.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement of amorphous localization algorithm in WSN using ALO and GWO;Concurrency and Computation: Practice and Experience;2024-01-29

2. Node localization and performance analysis using Pelican Optimization Algorithm in WSN;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3