Affiliation:
1. Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
2. Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
Abstract
Hypertrophic cardiomyopathy (HCM) is among the most common forms of cardiomyopathies, with a prevalence of 1:200 to 1:500 people. HCM is caused by variants in genes encoding cardiac sarcomeric proteins, of which a majority reside in MYH7, MYBPC3, and TNNT2. Up to 40% of the HCM cases do not have any known HCM variant. Genotype–phenotype associations in HCM remain incompletely understood. This study involved two visits of 46 adult patients with a confirmed diagnosis of HCM. In total, 174 genes were analyzed on the Next-Generation Sequencing platform, and transthoracic echocardiography was performed. Gene-specific discriminative echocardiogram findings were identified using the computer vision library Fast AI. This was accomplished with the generation of deep learning models for the classification of ultrasonic images based on the underlying genotype and a later analysis of the most decisive image regions. Gene-specific echocardiogram findings were identified: for variants in the MYH7 gene (vs. variant not detected), the most discriminative structures were the septum, left ventricular outflow tract (LVOT) segment, anterior wall, apex, right ventricle, and mitral apparatus; for variants in MYBPC3 gene (vs. variant not detected) these were the septum, left ventricle, and left ventricle/chamber; while for variants in the TNNT2 gene (vs. variant not detected), the most discriminative structures were the septum and right ventricle.
Funder
Autonomous Province of Vojvodina
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献