Removal and Reclamation of Trace Metals from Copper and Gold Mine Tailing Leachates Using an Alkali Suspension Method

Author:

Jiang Shunfeng12ORCID,Chen Yali3,Chen Siqin3,Hu Ziying3

Affiliation:

1. College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

2. National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China

3. CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China

Abstract

Leachates from mine tailing ponds, which usually contain a variety of metallic ions, are highly toxic to human and ecological health. The common methods used to remove those trace metallic are difficult due to the extremely acidic conditions and the diverse kinds of metals in mine tailing leachates. Herein, we proposed an economical and efficient soil-assisted alkali suspension approach to remove and reclaim the trace metals. Under the optimum conditions, more than 98% of Cu2+, Zn2+, and Cr3+, and 93% of Cd2+ were removed from authentic copper and gold tailing leachates. Multiple characterizations indicated that the quick removal of trace metal ions from leachates was mainly due to the formation of amorphous hydroxides which are easily adsorbed by soil particles. Additionally, small quantities of metal ions and organic matter complexes were formed, which contributed to the removal of trace metals. Furthermore, most of the adsorbed trace metal in authentic tailing leachate can be reclaimed by a simple acid treatment. Life cycle assessment analysis demonstrated the environmental sustainability of this alkali suspension method due to its smaller contribution to global warming. This study provides an efficient and low-cost approach for the disposal and recycling of toxic mine tailing leachates.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3