Effect of Paraffin Impregnation Modification on Bamboo Properties and Microstructure

Author:

Huang Lei1,Gu Weijie1,Lin Feng1,Zheng Yixuan1,Zhang Weigang1,Ma Zhongqing1ORCID,Bao Minzhen2ORCID,Li Yanjun1

Affiliation:

1. College of Chemistry and Materials Engineering, Zhejiang A & F University, Lin’an 311300, China

2. China National Bamboo Research Center, Hangzhou 310012, China

Abstract

Phase-change energy-storage paraffin regulates the thermal management of buildings, and the material can regulate room temperature as it absorbs and discharges heat. As a porous adsorbent material, bamboo has high permeability. The aim of this study was to increase the amount of paraffin inside bamboo and the latent heat of the phase change. It was performed using vacuum pressurization (VP) and ultra-high-pressure (UHP) impregnation treatments. The effect of UHP impregnation and properties of bamboo were studied. The weight gain, paraffin loss and dimensional changes were measured and compared. The morphology of UHP-impregnated bamboo were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The main conclusions are as follows: After UHP impregnation, the highest weight gain was 42%. The loss of paraffin was low, and a high weight percentage gain was maintained. The crystallinity of cellulose decreased to 24% at 100 MPa. The latent heat of the bamboo slices was up to 25.66 J/g at 50 MPa, and the phase change temperature was close to room temperature. At 150 MPa, the hydroxyl content was reduced, and the hydrophilicity decreased. In addition, the content of substances such as hemicellulose in the amorphous zone was reduced under UHP, no new characteristic peaks appeared, and no chemical modifications occurred. The vascular bundles were compressed and dense, and the pores and cell gaps decreased. The thin-walled cells were deformed, and the original cell structure was completely destroyed. The surface of the cells was wrapped or covered with paraffin, confirming that the paraffin could impregnate the bamboo cells under UHP. Therefore, bamboo impregnated with paraffin can regulate temperature and save energy in buildings. It is resistant to biological attacks, and UHP improves the impregnation efficiency.

Funder

“Fourteenth Five-Year Plan” National Key R&D Program Funded Project

Zhejiang Agricultural and Forestry University Research and Development Fund Talent Launch Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3