Real Fault Location in a Distribution Network Using Smart Feeder Meter Data

Author:

Mirshekali Hamid,Dashti RahmanORCID,Handrup Karsten,Shaker Hamid RezaORCID

Abstract

Distribution networks transmit electrical energy from an upstream network to customers. Undesirable circumstances such as faults in the distribution networks can cause hazardous conditions, equipment failure, and power outages. Therefore, to avoid financial loss, to maintain customer satisfaction, and network reliability, it is vital to restore the network as fast as possible. In this paper, a new fault location (FL) algorithm that uses the recorded data of smart meters (SMs) and smart feeder meters (SFMs) to locate the actual point of fault, is introduced. The method does not require high-resolution measurements, which is among the main advantages of the method. An impedance-based technique is utilized to detect all possible FL candidates in the distribution network. After the fault occurrence, the protection relay sends a signal to all SFMs, to collect the recorded active power of all connected lines after the fault. The higher value of active power represents the real faulty section due to the high-fault current. The effectiveness of the proposed method was investigated on an IEEE 11-node test feeder in MATLAB SIMULINK 2020b, under several situations, such as different fault resistances, distances, inception angles, and types. In some cases, the algorithm found two or three candidates for FL. In these cases, the section estimation helped to identify the real fault among all candidates. Section estimation method performs well for all simulated cases. The results showed that the proposed method was accurate and was able to precisely detect the real faulty section. To experimentally evaluate the proposed method’s powerfulness, a laboratory test and its simulation were carried out. The algorithm was precisely able to distinguish the real faulty section among all candidates in the experiment. The results revealed the robustness and effectiveness of the proposed method.

Funder

Energistyrelsen

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3