Advancing Wind Resource Assessment in Complex Terrain with Scanning Lidar Measurements

Author:

Gottschall JuliaORCID,Papetta Alkistis,Kassem HassanORCID,Meyer Paul Julian,Schrempf LindaORCID,Wetzel ChristianORCID,Becker Johannes

Abstract

The planning and realization of wind energy projects requires an as accurate and precise wind resource estimation as possible. Standard procedures combine shorter on-site measurements with the application of numerical models. The uncertainties of the numerical data generated from these models are, particularly in complex onshore terrain, not just rather high but typically not well quantified. In this article we propose a methodology for using a single scanning Doppler wind lidar device to calibrate the output data of a numerical flow model and with this not just quantify but potentially also reduce the uncertainties of the final wind resource estimate. The scanning lidar is configured to perform Plan Position Indicator (PPI) scans and the numerical flow data are projected onto this geometry. Deviations of the derived from the recorded line-of-sight wind speeds are used to identify deficiencies of the model and as starting point for an improvement and tuning. The developed methodology is demonstrated based on a study for a site in moderately complex terrain in central Germany and using two rather different types of numerical flow models. The findings suggest that the use of the methodology and the introduced scanning wind lidar technology offers a promising opportunity to control the uncertainty of the applied flow models, which can otherwise only be estimated very roughly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. BMWi (German Federal Ministry of Economic Affair and Energy) Renewable Energy Sources Act (EEG 2017)https://www.bmwi.de/Redaktion/DE/Downloads/E/eeg-2017-gesetz-en.pdf?__blob=publicationFile&v=8

2. An overview of wind-energy-production prediction bias, losses, and uncertainties

3. Wind Resource Assessment

4. MEASNET: Evaluation of Site-Specific Wind Conditions. Version 2https://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3