Abstract
In this study, a minimum amount of required propellant was calculated by analyzing the sequence with various re-entry conditions. This study aims to obtain data related to variation in trajectory and required propellant weight according to various re-entry scenarios. The drag coefficient at various altitudes, velocities, and thrust was calculated through numerical simulations to raise the reliability of the results. The calculation results were compared to the optimal values extracted from the genetic algorithm. It was observed that the duration of the entry-burn phase is dominant to the total required propellant weight. As a general tendency, high entry-burn starting altitude, high ending Mach number, and low landing-burn starting thrust make the required propellant weight low. However, if the entry-burn ending condition is set to the Mach number, it is necessary to select an appropriate re-entry condition. Additionally, from comparisons with the optimized results, it was confirmed that accurate calculation of the drag coefficient is important to succeed a soft landing of RLV.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献