Estimation of Transmission Line Parameters Using Voltage-Current Measurements and Whale Optimization Algorithm

Author:

Hassanein Wael S.ORCID,Ahmed Marwa M.,Mosaad Mohamed I.ORCID,Abu-Siada A.ORCID

Abstract

Real-time estimation of transmission line (TL) parameters is essential for proper management of transmission and distribution networks. These parameters can be used to detect incipient faults within the line and hence avoid any potential consequences. While some attempts can be found in the literature to estimate TL parameters, the presented techniques are either complex or impractical. Moreover, none of the presented techniques published in the literature so far can be implemented in real time. This paper presents a cost-effective technique to estimate TL parameters in real time. The proposed technique employs easily accessible voltage and current data measured at both ends of the line. For simplicity, only one quarter of the measured data is sampled and utilized in a developed objective function that is solved using the whale optimization algorithm (WOA) to estimate the TL parameters. The proposed objective function comprises the sum of square errors of the measured data and the corresponding estimated values. The robustness of the proposed technique is tested on a simple two-bus and the IEEE 14-bus systems. The impact of uncertainties in the measured data including magnitude, phase, and communication delay on the performance of the proposed estimation technique is also investigated. Results reveal the effectiveness of the proposed method that can be implemented in real time to detect any incipient variations in the TL parameters due to abnormal or fault events.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3