Batch Processing through Particle Swarm Optimization for Target Motion Analysis with Bottom Bounce Underwater Acoustic Signals

Author:

Oh Raegeun,Song Taek LyulORCID,Choi Jee Woong

Abstract

A target angular information in 3-dimensional space consists of an elevation angle and azimuth angle. Acoustic signals propagating along multiple paths in underwater environments usually have different elevation angles. Target motion analysis (TMA) uses the underwater acoustic signals received by a passive horizontal line array to track an underwater target. The target angle measured by the horizontal line array is, in fact, a conical angle that indicates the direction of the signal arriving at the line array sonar system. Accordingly, bottom bounce paths produce inaccurate target locations if they are interpreted as azimuth angles in the horizontal plane, as is commonly assumed in existing TMA technologies. Therefore, it is necessary to consider the effect of the conical angle on bearings-only TMA (BO-TMA). In this paper, a target conical angle causing angular ambiguity will be simulated using a ray tracing method in an underwater environment. A BO-TMA method using particle swarm optimization (PSO) is proposed for batch processing to solve the angular ambiguity problem.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3