Low Cost, High Performance, 16-Channel Microwave Measurement System for Tomographic Applications

Author:

Meaney PaulORCID,Hartov Alexander,Raynolds Timothy,Davis CynthiaORCID,Richter Sebastian,Schoenberger Florian,Geimer Shireen,Paulsen Keith

Abstract

We have developed a multichannel software defined radio-based transceiver measurement system for use in general microwave tomographic applications. The unit is compact enough to fit conveniently underneath the current illumination tank of the Dartmouth microwave breast imaging system. The system includes 16 channels that can both transmit and receive and it operates from 500 MHz to 2.5 GHz while measuring signals down to −140 dBm. As is the case with multichannel systems, cross-channel leakage is an important specification and must be lower than the noise floors for each receiver. This design exploits the isolation inherent when the individual receivers for each channel are physically separate; however, these challenging specifications require more involved signal isolation techniques at both the system design level and the individual, shielded component level. We describe the isolation design techniques for the critical system elements and demonstrate specification compliance at both the component and system level.

Funder

Office of Extramural Research, National Institutes of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Cost SDR-Based RF Transceiver for Microwave Breast Screening;2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC);2024-06-11

2. UWB Microwave Breast Screening With Self- Mixed Baseband Analog Signal Processing;IEEE Sensors Journal;2024-04-01

3. Improved TDD operation on Software-Defined Radio platforms towards future wireless standards;Computer Communications;2023-09

4. Low-cost device for breast cancer screening: A dry setup IR-UWB proposal;Biomedical Signal Processing and Control;2023-01

5. Integrated Fast UWB Time-Domain Microwave Breast Screening;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3