Characterization of Local Structures of Confined Imidazolium Ionic Liquids in PVdF-co-HFP Matrices by High Pressure Infrared Spectroscopy

Author:

Wang Teng-Hui,Wu Ming-Siou,Chang Hai-ChouORCID

Abstract

The nanoscale ion ordering of ionic liquids at confined interfaces under high pressures was investigated in this study. 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][NTf2])/poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-co-HFP) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2])/PVdF-co-HFP were prepared and characterized by using high-pressure infrared spectroscopy. Under ambient pressure, imidazolium C2–H and C4,5–H absorptions were blue-shifted in frequency due to the presence of PVdF-co-HFP. However, the absorption of anionic νa SO2 did not reveal any significant shifts in frequency upon dilution by PVdF-co-HFP. The experimental results suggest that PVdF-co-HFP disturbs the local structures of the imidazolium C–H groups instead of the anionic SO2 groups. The frequency shifts of C4,5–H became dramatic for the mixtures at high pressures. These results suggest that pressure-enhanced ionic liquid–polymer interactions may play an appreciable role in IL-PVdF-co-HFP systems under high pressures. The pressure-induced blue-shifts due to the PVdF-co-HFP additions were more obvious for the [HMIM][NTf2] mixtures than for [EMIM][NTf2] mixtures.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3