Synthesis, Electrocatalytic and Gas Transport Characteristics of Pentagonally Structured Star-Shaped Nanocrystallites of Pd-Ag

Author:

Petriev IliyaORCID,Pushankina Polina,Lutsenko Ivan,Shostak NikitaORCID,Baryshev Mikhail

Abstract

The method of synthesis of bimetallic Pd–Ag pentagonally structured catalyst “nanostar” on the surface of Pd-23%Ag alloy films has been developed. The resulting catalyst was studied as a highly active functional layer for methanol oxidation reaction (MOR) in alkaline media and the intensification of hydrogen transport through the Pd-23%Ag membrane in the processes of hydrogen diffusion purification. A modifying layer with a controlled size, composition and excellent electrocatalytic activity was synthesized by electrochemical deposition at a reduced current density compared to classical methods. The low deposition rate affects the formation of pentagonally structured nanocrystallites, allowing Pd and Ag particles to form well-defined structures due to the properties of the surfactant used. Electrochemical studies have demonstrated that the catalyst synthesized by the “nanostar” method shows better electrocatalytic activity in relation to MOR and demonstrates a higher peak current (up to 17.82 µA cm−2) in comparison with one for the catalyst synthesized by the “nanoparticle” method (up to 10.66 µA cm−2) in a cyclic voltammetric study. The nanostar catalyst electrode releases the highest current density (0.25 µA cm−2) for MOR and demonstrates higher catalytic activity for the oxidation of possible intermediates such as sodium formate in MOR. In the processes of diffusion membrane purification of hydrogen, a multiple increase in the density of the penetrating flux of hydrogen through the membranes modified by the “nanostar” catalyst (up to 10.6 mmol s−1 m−2) was demonstrated in comparison with the membranes modified by the “nanoparticles” method (up to 4.49 mmol s−1 m−2). Research data may indicate that the properties of the developed pentagonally structured catalyst “nanostar” and its enhanced activity with respect to reactions involving hydrogen increase the desorption activity of the membrane, which ultimately accelerates the overall stepwise transfer of hydrogen across the membrane.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3