Rational Regulation of Surface Free Radicals on TiO2 Nanotube Arrays via Ag2O–AgBiO3 towards Enhanced Selective Photoelectrochemical Detection

Author:

Pang Yajun,Chen Hao,Yang Jin,Wang Bo,Yang Zhenyu,Lv Jun,Pan Zhenghui,Xu Guangqing,Shen Zhehong,Wu Yucheng

Abstract

Due to integrated advances in photoelectrochemical (PEC) functionalities for environment detection applications, one-dimensional (1D) TiO2 nanostructures provide a new strategy (PEC sensors) towards organics detection in wastewater. However, the unidealized selectivity to the oxidation of water and organics limits the PEC detection performance. Herein, we designed a ternary photoanode consisting of Ag2O–AgBiO3/TiO2 nanotube arrays (NTAs) to solve this issue by using a facile one-step precipitation reaction. High oxidation capacity for organics is achieved by regulating the surface free radicals properly through the heterostructure formed between the interface of TiO2 and AgBiO3. More importantly, as a trap for electron capture, Ag2O in this ternary system could not only further improve the separation efficiency of charge carriers, but also capture electrons transferred to the TiO2 conduction band, thus reducing the electrons transferred to the external circuit and the corresponding background photocurrent when detecting organics. As a result, the reconstructed TiO2 NTAs decrease their photocurrent response to water and enhance their response to organics, thus presenting lower oxidation activity to water and higher activity to organics, that is, highly selective oxidation characteristics. This work provides more insights into the impact of charge transfer and surface free radicals on developing promising and efficient PEC sensors for organics.

Funder

the Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3