Quantitative Study of the Nonlinearly Enhanced Photoacoustic/Photothermal Effect by Strong LSPR-Coupled Nanoassemblies

Author:

Shi YujiaoORCID,Cui Dandan,Zhang Zhenhui

Abstract

The extensive exploration of the collective optical and thermal effects for localized surface plasmon resonance (LSPR)-coupled nanoassemblies has propelled much recent research and development in fields of photoacoustic (PA) imaging and photothermal (PT) therapy, while the rational design and proper engineering of these assemblies under quantitative guidance is still a highly challenging task. In this work, by utilizing the finite element analysis (FEA) method and taking gold nanochains as example, the authors quantitatively studied the coupling optical/thermal response of the nanoassemblies and the associated nonlinearly enhanced PA/PT effect. Results show that compared with their individuals, the strong electromagnetic/thermal coupling between the individuals of the nanoassemblies results in a several-time enhancement of the per-particle-weighted optical absorption, consequential thermal field enhancement, and initial PA pressure, resulting in nonlinearly amplified energy conversion from incident light to heat and PA waves. The dependence of the nonlinear PA/PT enhancement on the assembly chain length, the size of the individuals, the interparticle distance, and the size uniformity of the building blocks is quantitatively discussed. PA experiments on gold nanochains and gold nanospheres are performed to validate the proposition, and the experiments well silhouetted the theoretical discussion. This work paves the way for the rational construction and optimization of plasmonic nanoassemblies with improved PA/PT conversion efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3