A Parametric Study of the Effects of Critical Design Parameters on the Performance of Nanoscale Silicon Devices

Author:

Malik Faraz KaiserORCID,Talha TariqORCID,Ahmed Faisal

Abstract

The current electronics industry has used the aggressive miniaturization of solid-state devices to meet future technological demands. The downscaling of characteristic device dimensions into the sub-10 nm regime causes them to fall below the electron–phonon scattering length, thereby resulting in a transition from quasi-ballistic to ballistic carrier transport. In this study, a well-established Monte Carlo model is employed to systematically investigate the effects of various parameters such as applied voltage, channel length, electrode lengths, electrode doping and initial temperature on the performance of nanoscale silicon devices. Interestingly, from the obtained results, the short channel devices are found to exhibit smaller heat generation, with a 2 nm channel device having roughly two-thirds the heat generation rate observed in an 8 nm channel device, which is attributed to reduced carrier scattering in the ballistic transport regime. Furthermore, the drain contacts of the devices are identified as critical design areas to ensure safe and efficient performance. The heat generation rate is observed to increase linearly with an increase in the applied electric field strength but does not change significantly with an increase in the initial temperature, despite a marked reduction in the electric current flowing through the device.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of thermal rectification in solid-state devices;Journal of Semiconductors;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3