Nanostructure ITO and Get More of It. Better Performance at Lower Cost

Author:

López ManelORCID,Frieiro Juan LuisORCID,Nuez-Martínez Miquel,Pedemonte Martí,Palacio FranciscoORCID,Teixidor Francesc

Abstract

In this paper, we investigated how different growth conditions (i.e., temperature, growth time, and composition) allows for trading off cost (i.e., In content) and performance of nanostructured indium tin oxide (ITO) for biosensing applications. Next, we compared the behavior of these functionalized nanostructured surfaces obtained in different growth conditions between each other and with a standard thin film as a reference, observing improvements in effective detection area up to two orders of magnitude. This enhanced the biosensor’s sensitivity, with higher detection level, better accuracy and higher reproducibility. Results show that below 150 °C, the growth of ITO over the substrate forms a homogenous layer without any kind of nanostructuration. In contrast, at temperatures higher than 150 °C, a two-phase temperature-dependent growth was observed. We concluded that (i) nanowire length grows exponentially with temperature (activation energy 356 meV) and leads to optimal conditions in terms of both electroactive surface area and sensitivity at around 300 °C, (ii) longer times of growth than 30 min lead to larger active areas and (iii) the In content in a nanostructured film can be reduced by 10%, obtaining performances equivalent to those found in commercial flat-film ITO electrodes. In summary, this work shows how to produce appropriate materials with optimized cost and performances for different applications in biosensing.

Funder

Generalitat de Catalunya

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference66 articles.

1. Nanostructured Materials and Their Applications,2012

2. Handbook of Nanomaterials for Industrial Applications,2018

3. Nanostructured Materials, Fabrication to Applications,2017

4. Nanomaterials for biosensing applications: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3