Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors

Author:

Tiwari Santosh K.ORCID,Thakur Anukul K.ORCID,Adhikari Amrita De,Zhu Yanqiu,Wang NannanORCID

Abstract

This review acmes the latest developments of composites of metal oxides/sulfide comprising of graphene and its analogues as electrode materials in the construction of the next generation of supercapacitors (SCs). SCs have become an indispensable device of energy-storage modes. A prompt increase in the number of scientific accomplishments in this field, including publications, patents, and device fabrication, has evidenced the immense attention they have attracted from scientific communities. These efforts have resulted in rapid advancements in the field of SCs, focusing on the development of electrode materials with features of high performance, economic viability, and robustness. It has been demonstrated that carbon-based electrode materials mixed with metal oxides and sulfoxides can perform extremely well in terms of energy density, durability, and exceptional cyclic stability. Herein, the state-of-the-art technologies relevant to the fabrication, characterization, and property assessment of graphene-based SCs are discussed in detail, especially for the composite forms when mixing with metal sulfide, metal oxides, metal foams, and nanohybrids. Effective synthetic methodologies for the nanocomposite fabrications via intercalation, coating, wrapping, and covalent interactions will be reviewed. We will first introduce some fundamental aspects of SCs, and briefly highlight the impact of graphene-based nanostructures on the basic principle of SCs, and then the recent progress in graphene-based electrodes, electrolytes, and all-solid-state SCs will be covered. The important surface properties of the metal oxides/sulfides electrode materials (nickel oxide, nickel sulfide, molybdenum oxide, ruthenium oxides, stannous oxide, nickel-cobalt sulfide manganese oxides, multiferroic materials like BaMnF, core-shell materials, etc.) will be described in each section as per requirement. Finally, we will show that composites of graphene-based electrodes are promising for the construction of the next generation of high performance, robust SCs that hold the prospects for practical applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference203 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3