Mesoporous Carbons from Polysaccharides and Their Use in Li-O2 Batteries

Author:

Uriburu-Gray María,Pinar-Serrano Aránzazu,Cavus Gokhan,Knipping EtienneORCID,Aucher Christophe,Conesa-Cabeza Aleix,Satti Amro,Amantia David,Martínez-Crespiera Sandra

Abstract

Previous studies have demonstrated that the mesoporosity of carbon material obtained by the Starbon® process from starch-formed by amylose and amylopectin can be tuned by controlling this ratio (the higher the amylose, the higher the mesoporosity). This study shows that starch type can also be an important parameter to control this mesoporosity. Carbons with controlled mesoporosity (Vmeso from 0.1–0.7 cm3/g) have been produced by the pre-mixing of different starches using an ionic liquid (IL) followed by a modified Starbon® process. The results show that the use of starch from corn and maize (commercially available Hylon VII with maize, respectively) is the better combination to increase the mesopore volume. Moreover, “low-cost” mesoporous carbons have been obtained by the direct carbonization of the pre-treated starch mixtures with the IL. In all cases, the IL can be recovered and reused, as demonstrated by its recycling up to three times. Furthermore, and as a comparison, chitosan has been also used as a precursor to obtain N-doped mesoporous carbons (5.5 wt% N) with moderate mesoporosity (Vmeso = 0.43 cm3/g). The different mesoporous carbons have been tested as cathode components in Li-O2 batteries and it is shown that a higher carbon mesoporosity, produced from starch precursor, or the N-doping, produced from chitosan precursor, increase the final battery cell performance (specific capacity and cycling).

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3