Vitelline Membrane Protein 26 Mutagenesis, Using CRISPR/Cas9, Results in Egg Collapse in Plutella xylostella

Author:

Zhai Yi-Long,Dong Shi-Jie,Zou Ming-Min,Qin Yu-Dong,Liu Li-Li,Cao Min-Hui,Huang Meng-Qi,Vasseur LietteORCID,You Min-Sheng,Peng LuORCID

Abstract

Vitelline membrane proteins (VMPs) are the main proteins that form the inner shell (vitelline membrane layer) of insect eggs and are an integral part of egg formation and embryo development. Here, we characterized the molecular structure and expression patterns of the VMP26 gene and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a worldwide migratory pest of cruciferous plants. The PxVMP26 gene was shown to be a single exon gene that contained an open reading frame of 852 base pairs (bp) encoding 283 amino acids. Both qPCR and western blot analyses showed that PxVMP26 was specifically expressed in female adults and was significantly highly expressed in the ovary. Further anatomical analysis indicated that the expression level of PxVMP26 in the ovarian tube with an incomplete yolk was significantly higher than that in the ovarian tube with a complete yolk. CRISPR/Cas9-induced PxVMP26 knockout successfully created two homozygous strains with 8- and 46-bp frameshift mutations. The expression deficiency of the PxVMP26 protein was detected in the mutant strains using immunofluorescence and western blot. No significant difference was found in the number of eggs laid within three days between wild and mutant individuals, but there was a lower egg hatchability. The loss of the PxVMP26 gene changed the mean egg size, damaged the structure of the vitelline membrane, and increased the proportion of abnormal eggs due to water loss, resulting in egg collapse. This first analysis of the roles of the VMP gene in the oocyte formation and embryonic development of P. xylostella, using CRISPR/Cas9 technology, provides a basis for screening new genetic control targets of P. xylostella.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3