Abstract
Surface-modified graphite is studied as an electrode material, an adsorbent, and a membrane component, among other applications. Modifying the graphite with plasma can be used to create relevant surface functionalities, in particular, various oxygen groups. The application of surface-oxidized graphite often requires its use in an aqueous environment. The application in an aqueous environment is not an issue for acid-oxidized carbons, but a discrepancy in the structure–activity relationship may arise because plasma-oxidized carbons show a time-dependent decrease in the degree of functionalization and related properties. Moreover, plasma-oxidized materials are often characterized in terms of their chemical and physical properties, most notably their degree of functionalization after plasma treatment, without contact with water. In this study, we used low-temperature plasma oxidation with pure oxygen and carbon dioxide and sample-washing with concentrated nitric and sulfuric acids. To evaluate the electronic properties of modified graphite, the work function changes and surface oxygen content were measured just after plasma modification and after water immersion. We show that water immersion drastically decreases the work function of plasma-treated samples, which is accompanied by a decrease in the number of radicals introduced by plasma. Our results demonstrate that the increase in stable work function as a result of plasma treatment, brought about by an increase in the surface oxygen species concentration, can be realized most effectively for the acid-washed graphite.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献