Functionalization of Graphite with Oxidative Plasma

Author:

Stelmachowski PawełORCID,Maj Dominik,Grzybek GabrielaORCID,Kruczała KrzysztofORCID,Kotarba AndrzejORCID

Abstract

Surface-modified graphite is studied as an electrode material, an adsorbent, and a membrane component, among other applications. Modifying the graphite with plasma can be used to create relevant surface functionalities, in particular, various oxygen groups. The application of surface-oxidized graphite often requires its use in an aqueous environment. The application in an aqueous environment is not an issue for acid-oxidized carbons, but a discrepancy in the structure–activity relationship may arise because plasma-oxidized carbons show a time-dependent decrease in the degree of functionalization and related properties. Moreover, plasma-oxidized materials are often characterized in terms of their chemical and physical properties, most notably their degree of functionalization after plasma treatment, without contact with water. In this study, we used low-temperature plasma oxidation with pure oxygen and carbon dioxide and sample-washing with concentrated nitric and sulfuric acids. To evaluate the electronic properties of modified graphite, the work function changes and surface oxygen content were measured just after plasma modification and after water immersion. We show that water immersion drastically decreases the work function of plasma-treated samples, which is accompanied by a decrease in the number of radicals introduced by plasma. Our results demonstrate that the increase in stable work function as a result of plasma treatment, brought about by an increase in the surface oxygen species concentration, can be realized most effectively for the acid-washed graphite.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3