Abstract
Commonly used intestinal in vitro models are limited in their potential to predict oral drug absorption. They either lack the capability to form a tight cellular monolayer mimicking the intestinal epithelial barrier or the expression of cytochrome P450 3A4 (CYP3A4). The aim of this study was to establish a platform of colorectal cancer patient-derived cell lines for evaluation of human intestinal drug absorption and metabolism. We characterized ten 2D cell lines out of our collection with confluent outgrowth and long-lasting barrier forming potential as well as suitability for high throughput applications with special emphasis on expression and inducibility of CYP3A4. By assessment of the transepithelial electrical resistance (TEER) the cells barrier function capacity can be quantified. Very high TEER levels were detected for HROC60. A high basal CYP3A4 expression and function was found for HROC32. Eight cell lines showed higher CYP3A4 induction by stimulation via the vitamin D receptor compared to Caco-2 cells (5.1- to 16.8-fold change). Stimulation of the pregnane X receptor led to higher CYP3A4 induction in two cell lines. In sum, we identified the two cell lines HROC183 T0 M2 and HROC217 T1 M2 as useful tools for in vitro drug absorption studies. Due to their high TEER values and inducibility by drug receptor ligands, they may be superior to Caco-2 cells to analyze oral drug absorption and intestinal drug–drug interactions. Significance statement: Selecting appropriate candidates is important in preclinical drug development. Therefore, cell models to predict absorption from the human intestine are of the utmost importance. This study revealed that the human cell lines HROC183 T0 M2 and HROC217 T1 M2 may be better suited models and possess higher predictive power of pregnane X receptor- and vitamin D-mediated drug metabolism than Caco-2 cells. Consequently, they represent useful tools for predicting intestinal absorption and simultaneously enable assessment of membrane permeability and first-pass metabolism.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献