Abstract
Apatites are one of the most intensively studied materials for possible biomedical applications. New perspectives of possible application of apatites correspond with the development of nanomaterials and nanocompounds. Here, an effort to systematize different kinds of human bioapatites forming bones, dentin, and enamel was undertaken. The precursors of bioapatites and hydroxyapatite were also considered. The rigorous consideration of compositions and stoichiometry of bioapatites allowed us to establish an order in their mutual sequence. The chemical reactions describing potential transformations of biomaterials from octacalcium phosphate into hydroxyapatite via all intermediate stages were postulated. Regardless of whether the reactions occur in reality, all apatite biomaterials behave as if they participate in them. To conserve the charge, additional free charges were introduced, with an assumed meaning to be joined with the defects. The distribution of defects was coupled with the values of crystallographic parameters “a” and “c”. The energetic balances of bioapatite transformations were calculated. The apatite biomaterials are surprisingly regular structures with non-integer stoichiometric coefficients. The results presented here will be helpful for the further design and development of nanomaterials.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献