Inhibition of Class I Histone Deacetylase Activity Blocks the Induction of TNFAIP3 Both Directly and Indirectly via the Suppression of Endogenous TNF-α

Author:

Schioppa TizianaORCID,Nguyen Hoang Oanh,Tiberio LauraORCID,Sozio Francesca,Gaudenzi Carolina,Passari MauroORCID,Del Prete AnnalisaORCID,Bosisio DanielaORCID,Salvi Valentina

Abstract

Histone deacetylase inhibitors (HDIs) are promising drugs for the treatment of inflammatory diseases. However, their therapeutical exploitation is slowed down by severe adverse manifestations that can hardly be foreseen, mainly due to incomplete knowledge of how HDIs impact the delicate balance of inflammatory mediators. In this work, we characterized the effects of the HDI trichostatin A (TSA) on the expression of TNFAIP3, which is a crucial inhibitor of the classical NF-kB pathway and an LPS-induced negative feedback regulator. The accumulation of TNFAIP3 mRNA after LPS stimulation showed biphasic behavior, with one wave within the first hour of stimulation and a second wave several hours later, which were both reduced by TSA. By using inhibition and knockdown approaches, we identified two temporally and mechanistically distinct modes of action. The first wave of TNAIP3 accumulation was directly blunted by the histone deacetylase (HDAC) blockade. By contrast, the second wave was decreased mainly because of the lack of endogenous TNF-α induction, which, in turn, depended on the intact HDAC activity. In both cases, class I HDACs appeared to play a nonredundant role, with HDAC3 required, but not sufficient, for TNF-α and TNFAIP3 induction. In addition to TNFAIP3, TNF-α is known to induce many response genes that orchestrate the inflammatory cascade. Thus, suppression of TNF-α may represent a general mechanism through which HDIs regulate a selected set of target genes.

Funder

Italian Ministry of the University and Research

University of Brescia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3