Abstract
We designed and synthesized an asymmetric non-fullerene small molecule acceptor (NF-SMA) IDT-TNIC with an A–D–π–A structure, based on an indacenodithiophene (IDT) central core, with a unidirectional non-fused alkylthio-thiophene (T) π-bridge, and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (NIC) extended terminal groups. IDT-TNIC molecules still maintain a good coplanar structure, which benefits from the non-covalent conformational locks (NCL) between O···S and S···S. The asymmetric structure increases the molecular dipole moment, and the extended terminal group broadens the absorption of the material, resulting in an excellent photovoltaic performance of IDT-TNIC. The photovoltaic device, based on PBDB-T:IDT-TNIC, exhibits an energetic PCE of 11.32% with a high Voc of 0.87 V, high Jsc of 19.85 mA cm−2, and a low energy loss of 0.57 eV. More importantly, IDT-TNICs with asymmetric structures show a superior property compared to symmetric IDT-Ns. The results demonstrate that it is an effectual strategy to enhance the properties of asymmetric A–D–π–A-based NF-SMAs with non-fused NCL π-bridges and extended terminal groups.
Funder
National Natural Science Foundation of China
Jiangsu Provincial Natural Science Foundation
Collaborative Innovation Center of Suzhou Nano Science & Technology
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献